Dados de análise do banco de dados METABRIC.
#knitr::kable(md[1:20,1:6])
DT::datatable(md[, 1:6])
n | mean | sd | median | |
---|---|---|---|---|
Negative | 472 | 54.64549 | 13.17374 | 54.46 |
Positive | 1505 | 63.11792 | 12.21267 | 63.94 |
## NOTE: Either Arial Narrow or Roboto Condensed fonts are required to use these themes.
## Please use hrbrthemes::import_roboto_condensed() to install Roboto Condensed and
## if Arial Narrow is not on your system, please see https://bit.ly/arialnarrow
## `geom_smooth()` using formula 'y ~ x'
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
## No trace type specified:
## Based on info supplied, a 'scatter' trace seems appropriate.
## Read more about this trace type -> https://plotly.com/r/reference/#scatter
## No scatter mode specifed:
## Setting the mode to markers
## Read more about this attribute -> https://plotly.com/r/reference/#scatter-mode
library(rjson)
url <- 'https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json'
counties <- rjson::fromJSON(file=url)
url2<- "https://raw.githubusercontent.com/plotly/datasets/master/fips-unemp-16.csv"
df <- read.csv(url2, colClasses=c(fips="character"))
g <- list(
scope = 'usa',
projection = list(type = 'albers usa'),
showlakes = TRUE,
lakecolor = toRGB('white')
)
fig <- plot_ly()
fig <- fig %>% add_trace(
type="choropleth",
geojson=counties,
locations=df$fips,
z=df$unemp,
colorscale="Viridis",
zmin=0,
zmax=12,
marker=list(line=list(
width=0)
)
)
fig <- fig %>% colorbar(title = "Unemployment Rate (%)")
fig <- fig %>% layout(
title = "2016 US Unemployment by County"
)
fig <- fig %>% layout(
geo = g
)
fig